Showing posts with label Furnace lining. Show all posts
Showing posts with label Furnace lining. Show all posts

March 23, 2010

Criteria for Furnace (or Kiln) Design and Selection of Refractories

The primary function of any refractory material is to withstand high temperature in a hostile environment. However, in actual application it is required to perform many other functions depending upon the place of use and prevailing service conditions.
The general requirement which a refractory material is to fulfill may be summarized as follows:
1. Ability to withstand high temperature.
2. Ability to withstand temperature fluctuation.
3. Ability to withstand the actions of processing materials and product of combustion.
4. Ability to withstand load under high temperature.
5. Ability to withstand impact and abrasion of solid, liquid and dust laden gases moving with high speed.
6. The refractory material should be volume stable.
7. It should not contaminate the finished product.
8. The refractory material should have low co-efficient of thermal expansion.
9. It should not conduct much heat.
For a proper design of any refractory lining system it is essential that the complete information of furnace or kiln type and prevailing service conditions are available.
The most important operational data required for the selection of refractories are as follows:
Furnace / Kiln Type            :  For which industry the furnace or the kiln is to be used.
Process                               :  Details of process to be adopted. Will the refractory material come in direct contact with slag, metal, dust, fluxing agent, gas or flame? Which part of the furnace or kiln will be subjected to the destructive actions of the above elements, etc.
Fuel                                      :  Type of fuel to be used for generation of heat energy. How the furnace will be heated.
Operation                            :  How the furnace (kiln) will be operated: continuous or intermittent. What is the extent of temperature fluctuation and over what period of time. To what extent the refractories will be exposed to thermal shock.
Operation - Temperature :  What will be the highest temperature to which refractories will be exposed. What will be the peaks.
Limiting - Temperature     :  What are the maximum and minimum temperatures of the furnace or kiln design components e.g. steel shell temperature etc.
Heat Loss                            :  What heat loss will take place? Is the heat to be conducted through refractories or retained within the furnace?
Surrounding Conditions   :  What are the surrounding conditions such as heat flux calculations, influence of any adjacent plant or component, maximum and minimum ambient temperatures, wind speed, radiation co-efficient etc.
Furnace Atmosphere          :  Is it neutral, oxidizing, reducing or changing?
Furnace Pressure               :  What operation pressure is expected? Is the furnace part under suction or under positive pressure.
In actual situation the refractories may have to work under some or all of the above conditions. They may act simultaneously and demand suitable refractories to withstand the destructive forces. No single refractory material can satisfy the entire requirement. Hence, a compromise is made and the most demanding requirements are first met at the cost of other lesser requirements. For example, in a hot air or gas carrying system the thermal conductivity would be the vital criteria. Therefore from every saving point of view insulating properties of the refractory material becomes more important than other properties for design considerations.
Recent Posts

July 27, 2009

Blast Furnace (BF) - Refractory Lining Pattern

Refractory Technology: Different temperature zones of a Blast Furnace image Fig: Blast Furnace Temperature Zones

Refractory Technology: Blast Furnace image
Fig: Typical areas of a Blast Furnace
Blast Furnace - An Introduction
Blast Furnace is the focus of any integrated steel plant. Blast furnace is used to reduce the iron ore to iron. The charge, which consists of iron ore, coke and limestone etc. in the form of lumps and different ratios, is fed from the top. Air heated in the blast furnace stoves, is applied from the bottom of the furnace. The hot blast comes in contact with the descending charge in furnace and the iron ore gets reduced to iron due to reducing conditions on account of CO2 and CO in the furnace. CO provides further heat and a very high temperature is developed because of which the iron gets melted which, along with the slag is collected in the hearth from where these are tapped separately from different tap holes.
Ironmaking technology in general made great strides particularly, during the past few decades and as a result of which many alternative ironmaking processes such as Finmet, Fastmet, Hismelt, Romelt, COREX®, and FINEX® etc. have emerged. Nevertheless, the classical Blast Furnace, which has been around the longest, continues to be the dominant method of ironmaking till now. Improvements in burden quality, burden distribution, casting technology, and computer assisted supervision were realized throughout the world. To a great extent these operational improvements made it possible to install very sophisticated refractory lining systems in blast furnaces. The application condition of different sections of a blast furnace is different due to the very nature of its geometry and also pyrometallurgical process occurring at different stages (see adjacent Blast Furnace figures). Therefore, the Blast Furnace Bottom, Hearth, Taphole, Tuyeres, Bosh, Belly, Stack, Cast house, Blast Furnace Stoves all require different quality of refractories depending on the respective application conditions.
Selection of appropriate refractory combination depends on in-depth knowledge of ironmaking system and the physical, mechanical and chemical properties of the proposed refractories. An improper understanding of the above factors often leads to a refractory failure which, subsequently, becomes a complex problem to solve. Refractory linings whether it is of a Blast Furnace or any other furnace, usually fail due to any number or combination of such factors. For the convenience of understanding, here we will discuss the types of refractory lining required in a blast furnace area wise as well as the trend in the refractory lining pattern that has been observed during the last few years.
Furnace RefractoriesRefractory Technology: Blast Furnace refractory lining pattern graphics
Fig: Conventional and New Refractory Lining along with Wear Mechanism
Now-a-days the campaign life of Blast Furnace is measured in terms of 10 - 15 yrs rather than 4 - 5 yrs while on the other hand, the trend is to replace smaller Blast Furnaces with large capacity Blast Furnaces, which are being subjected to even more stringent operating conditions. To achieve these goals, it is necessary to have a good combination of high grade refractories combined with highly efficient cooling systems and tight control on furnace operation to ensure high productivity without excessive wall working and with minimization of massive “slips” in the blast furnace which can cause excessive premature damage to the refractory linings. It is known that the bottom and a part of the hearth are corroded mainly by pig iron, slag and alkalies. Refractory bricks in these areas are subjected to high load and temperature. So it requires a refractory lining which should have high strength, lower creep in compression value and higher RUL and PCE values. Many furnaces still use low iron, dense 42-62% Alumina, Mullite refractory bricks, conventional Carbon blocks etc. in the bottom and lower hearth while the present trend is to replace it with super micro-pore Graphite bricks.
Research and data shows that Blast Furnace hearth life mainly depends on the following factors:
1. Operational Factors such as,
(a) High productivity leading to High heat loads
    (b) High fluid velocity causing more erosion
    (c) High coal injection means lower permeability
None of the above factors is under the control of furnace operator and hence, the only solution for this can be a robust refractory lining.
2. Refractory Lining System Design The entire refractory lining is also subjected to thermal stress which also plays a dominant role especially when the design is inadequate. The refractory lining system or design must take care of the following things -
(a) Optimize thermal resistance
(b) Provide expansion relief
(c) Prevent cracking
(d) Eliminate built-in barriers.
3. Refractory Properties
(a) High thermal conductivity
(b) Alkali resistance
(c) Low permeability
(d) Low thermal expansion
(e) Low elasticity.
The recent development of micro-porous carbon bricks and improvement in the quality of semi-graphite and graphite bricks has led to higher infiltration resistance to iron and slags, and thermal conductivity. The problem of brittle layer formation around 800OC isotherm by alkali condensation and thermal stresses have been addressed to by using smaller blocks, optimum expansion allowances etc. The carbon refractories are covered by fireclay or mullite bricks to protect it against oxidation. The design of this ‘Ceramic Cup’ is important, as the isotherms are altered depending on the quality and thickness of the cup material.
The stack bricks are particularly; exposed to high abrasion and erosion by charge material from top as well as high velocity fume and dust particles going out due to high blast pressure in a CO environment. Therefore, the application condition demands refractory materials which should have high strength, low permeability, high abrasion resistance and resistance to CO disintegration. Superduty fireclay refractory brick or dense alumina brick having Al2O3 around 39 - 42% can impart these characteristics required for stack application. The tuyere and bosh are attacked by temperature change, abrasion and alkalies; and the belly and lower shaft by thermal shock, abrasion and carbon monoxide attack etc. In the critical areas of the furnace, i.e. tuyere, bosh, belly and lower stack, silicon carbide, SiC-Si3N4 and corundum refractories have replaced carbon and 62% Al2O3 or Mullite bricks – taking advantage of the high thermal conductivity of SiC in combination with the stave coolers. However due to the problem of water leakage around taphole and tuyere area many blast furnaces are lined with high alumina or Alumina-Chrome corundum refractories.
Hot Blast Stove Refractories
The hot blast system, incorporating either three or four hot blast stoves per blast furnace, is the other major refractory installation in the blast furnace complex. With today’s large blast furnaces, the main trend in hot-blast stoves is toward high temperature and pressure ventilation with dome temperature around 1550OC, blast temperatures of 1250 - 1400OC, and furnace pressures of 3 - 5 kg/cm2. Therefore, selection of refractories for hot blast stoves depends primarily on their creep resistance properties, bulk density, specific heat, thermal shock resistance, cold crushing strength, thermal expansion and dimensional accuracy. Blast furnace stoves are generally designed by high alumina bricks and checkers. Silica bricks have been introduced in high temperature stoves operating over 1300OC and where the temperature is never allowed to drop below 600OC as silica bricks display poor thermal shock resistance at such low temperatures. Alternatively silica checker bricks can be used can be used in high temperature zone, high alumina bricks in the middle temperature range and hard fired fireclay bricks and other high strength bricks at the bottom checker level.
Table: Blast Furnace Refractories
39-42% Al2O3
Super-duty fireclay
39-42% Al2O3
Corundum, SiC-Si3N4
62% Al2O3, Mullite
62% Al2O3, Mullite
SiC self-bonded, Al-Chrome (Corundum)
Lower Hearth
42-62% Al2O3, Mullite, Conventional Carbon block
Carbon/Graphite block with super micro-pores
Fireclay tar bonded, High Alumina / SiC tar bonded
Fireclay tar bonded, High Alumina / SiC tar bonded
Main Trough
Pitch / water bonded, Clay / Grog / Tar bonded ramming masses, Castables
Ultra low cement castables, SiC / Alumina mixes, Gunning repairing technique
Tilting Spout
High alumina / SiC ramming masses / Low Cement Castables
High alumina / SiC / Carbon / ULCC
Hot Blast Stove
42-82% Al2O
70-82% Al2O3, 91% SiO2 checker bricks

Recent Articles –
Blast Furnace Trough Mix (Refractories)

June 12, 2009

Refractory Lining of Pipes and Chutes

Refractory lining of Pipes / Chutes

Fig.- Lining of a Pipe with Insulating Refractory Side Arch Bricks

‘Piping’ and ‘Chutes’ are used in furnaces for the purpose of transporting hot air, gases or solid usually accompanied with fine, hot dust particles. Depending on the existing stress, the piping is lined with single layer or multilayer insulating refractory materials. Examples for piping with diameters up to 2000 mm are gas piping for Reformers and metal slides in Preheaters of Cement Plants. Examples for piping with diameters above 2000 mm are recirculating shafts in Lignite Power Plants and Hot Blast Mains in Blast Furnace Plants. Below given are certain points (rules) which must be taken care of, while doing refractory brick lining of pipes:

=> Material and personal transport must be coordinated with the piping designer during the planning phase. Manholes, equipment for scaffolds and material transport must be determined.

=> If the refractory lining consists of several layers, each layer should be installed separately or section by section in order to prevent material mix-up.

=> Expansion joints may not be smaller or larger than what is indicated in the drawings. Mortar residue or other contamination (dust etc.) must not get into the expansion joints.

=> Expansion joint bricks, closed bricks and bricks for bevel areas must be measured, finished and installed precisely. Hollow spaces must be avoided due to danger of background currents.

=> If piping is lined on the ground, a trial installation of the closer piece to be fitted into each stand of pipes must be undertaken or it must be lined on site.

=> The lining on the ground is only possible if both piping and refractory designer have already determined length and weight of the pipe chutes. This will help prevent undesired deformations of the lined pipes.

=> In order to prevent transportation damages the lining of pipe chutes having larger diameters should be protected by braces. These braces must be of such a design and make that they can be securely transported and can be easily removed without damaging the lining.

=> The refractory lining dimensions, especially at the ends of pipe chutes, must be precisely observed. Crowding and damage to the refractory lining during assembly should be prevented.

=> Below expansion joints must be approved and cleared by the piping designer before refractory lining work starts. Special attention must be given to observance of the cold dimensions (initial tension / stress) and flow direction.

Related Posts:

Installation Procedure of Refractory Ramming Mass and Heating Schedule for INDUCTION FURNACE

Refractory Bricks, Mortar and Castable for Reheating Furnace Lining